Tuesday, October 18, 2016

Securing the voting process: Four essential reads

Image 20160922 22509 1a0uggk.jpg?ixlib=rb 1.1
How secure is your vote? Hands with votes illustration via shutterstock.com
Jeff Inglis, The Conversation

Editor’s note: The following is a roundup of stories related to election cybersecurity.

Every vote counts. It’s the key principle underlying democracy. Through the history of democratic elections, people have created many safeguards to ensure votes are cast and counted fairly: paper ballots, curtains around voting booths, locked ballot boxes, supervised counting, provisions for recounting and more.

With the advent of computer technology has come the prospect of faster counting of votes, and even, some hope, more secure and accurate voting. That’s much harder to achieve than it might seem, though. Here are highlights of The Conversation’s coverage of why that is.

Voting machines are old

After the debacle of the 2000 election’s efforts to count votes, the federal government handed out massive amounts of money to the states to buy newer voting equipment that, everyone hoped, would avoid a repeat of the “hanging chad” mess. But more than a decade later, as Lawrence Norden and Christopher Famighetti at the Brennan Center for Justice at New York University explain, that one-time cash infusion has left a troubling legacy:

Imagine you went to your basement and dusted off the laptop or mobile phone that you used in 2002. What would happen if you tried to turn it on? We don’t have to guess. Around the country this election year, people are going into storage, pulling out computers that date back to 2002 and asking us to vote on them.

They asked election officials around the country about the situation, and report on some worrying findings, including how vulnerable the equipment is to cyberattack, and how voting machine breakdowns lead to long lines that deter voters from participating.

Not everyone can use the devices

Also limiting voter turnout is the fact that most voting machines don’t make accommodations for people with physical disabilities that affect how they vote. Juan Gilbert at the University of Florida quantifies the problem:

“In the 2012 presidential election, … The turnout rate for voters with disabilities was 5.7 percent lower than for people without disabilities. If voters with disabilities had voted at the same rate as those without a disability, there would have been three million more voters weighing in on issues of local, state and national significance.”

To date, most efforts to solve the problems have involved using special voting equipment just for people with particular disabilities. That’s expensive and inefficient – and remember, separate is not equal. Gilbert has invented an open-source (read: inexpensive) voting machine system that can be used by people with many different disabilities, as well as people without disabilities.

With the system, which has been tested and approved in several states, voters can cast their ballots using a keyboard, a joystick, physical buttons, a touchscreen or even their voice.

Machines are not secure

Nearly every voting machine in use, though, is vulnerable to various sorts of cyberattacks. For years, researchers have documented ways to tamper with vote counts, and yet few machines have had their cyberdefenses upgraded.

The fact that the election system is so widespread – with multiple machines in every municipality nationwide – also makes it weaker, writes Richard Forno at the University of Maryland, Baltimore County: There are simply more opportunities for an attacker to find a way in.

“Voter registration and administration systems operated by state and national governments are at risk too. Hacks here could affect voter rosters and citizen databases. Failing to secure these systems and records could result in fraudulent information in the voter database that may lead to improper (or illegal) voter registrations and potentially the casting of fraudulent votes.”

Even without an attack, major concerns

Even if an attack never happens – or if nobody can prove one happened – November’s election is vulnerable to sore losers taking advantage of the fact that cyberweaknesses exist.

There is more than enough evidence that a cyberattack is possible. And just that prospect could destabilize the country, argues Herbert Lin of Stanford University:

Imagine that on Nov. 9, the day after Election Day, the early presidential election returns show that Donald Trump has lost. … Trump could call the electronically tallied vote counts obviously fraudulent. Even without pointing to any internal campaign polling suggesting he would win, he could highlight the indisputable fact that no one knows what is going on inside the voting machines.

The ConversationIt’s enough to make you turn out to vote, and keep you up all night afterward.

Jeff Inglis, Science + Technology Editor, The Conversation

This article was originally published on The Conversation. Read the original article.

Thursday, July 2, 2015

Moving Beyond FracFocus: Bringing Real Transparency to Fracking

Since its launch in 2011, FracFocus, a government- and industry-funded website, has been the only place where Americans could learn the details about chemicals and water used in fracking operations near their homes, schools and businesses. But FracFocus has never lived up to its promise of bringing true transparency to fracking. And now, at least one state is planning to set its own course for fracking disclosure.

Pennsylvania’s Department of Environmental Protection has announced that it is withdrawing from FracFocus. Starting in March 2016, Pennsylvania’s fracking operators will have to report electronically to a state database that will present citizens with a map-based interface with simple one-click summaries of specific wells, in addition to downloadable bulk data.

Pennsylvania officials say this is to counter FracFocus’s lack of user-friendliness, which has long been a source of consternation to researchers attempting to document the impacts and risks of fracking. For many years, FracFocus’s website was populated with individual PDF files, scanned copies of forms filed by fracking companies. Initially, many of those disclosures were voluntary; as the site’s influence grew, states began requiring frackers to file with FracFocus. But the database was always far from complete.

FracFocus could be useful for citizens curious about an individual well, but the database was notoriously unfriendly to those wanting to probe more deeply into fracking. For a long time, searches could not return more than 2,000 records. From those search results, users could not download more than a small number of actual disclosure forms each day. What they were able to download was not machine-readable or searchable in any way.

Those limitations persisted as FracFocus improved its underlying data structure, in 2013 requiring disclosures to be submitted in a machine-readable format to an electronic database.

It was 2015 before the public was allowed to download machine-readable data. This latest improvement in FracFocus transparency is welcome, but still falls short of modern standards for making data available and accessible to the public. In Frontier Group’s work on government spending transparency, we have argued that, to be useful to the public, transparency data must (among other things) be searchable, bulk-downloadable, and “one-stop,” meaning that citizens shouldn’t have to jump through multiple hoops or have specialized knowledge to obtain important information.

By contrast, here’s what the average person would have to do to even look at the bulk-downloadable data from FracFocus:
  • Download, install, configure and operate a major database server system, Microsoft SQL Server Management Studio, as well as SQL Server Configuration Manager. They are free, but hard to find on the Microsoft download website (the latest version is here). They have terribly un-intuitive interfaces once they’re running. They are also PC-specific, so Mac users are out of luck.
  • Purchase Microsoft Access, a database program not included in the regular version of Microsoft Office (the one that includes Word, Excel and PowerPoint). Microsoft charges $109.99; Amazon’s price is $99.99. (You could use a different database program, but the instructions provided by FracFocus are Access-specific.)
  • Follow a complicated series of steps – laid out in a nine-page PDF document provided by FracFocus – to convert the data to a form usable by Microsoft Access.
  • Construct queries in Access – not a simple point-and-click database program by any stretch – and interpret the results.
This process is not for the faint of heart, nor for the computer-inexperienced.

Even then, the data are not presented clearly. Rather than a company simply listing how many gallons of water and how many pounds of which chemicals it pumped deep underground at which well, key numbers are presented as percentages of the final fracking fluid. That requires a significant series of careful database queries and spreadsheet calculations to get actual usable figures.

With luck, Pennsylvania’s reporting system will set a new standard for public disclosure of, and citizen access to, data related to fracking. The creation of separate databases for every state where fracking occurs is not the ideal solution – a high-quality national database would be better. But until FracFocus catches up to the standards of data quality and user-friendliness people expect in the 21st century, citizens will need to look to the states to protect their access to this important information that affects their health and well-being.

Tuesday, June 9, 2015

EPA Study Confirms Fracking’s Dangers to Drinking Water

Does fracking harm drinking water? The EPA spent five years studying it. And from some of the press coverage, you might be confused about the answer.

But here is the real bottom line: The EPA study finds that fracking can harm drinking water in a variety of well-understood ways. It also finds that fracking has harmed drinking water in a number of instances across the country. And there are likely many more instances of harm from fracking than the EPA or anyone else has yet discovered.

The EPA concludes that fracking is linked to “important vulnerabilities to drinking water resources.” Translation: Fracking threatens water quality. Period.

The threats are five-fold, according to the EPA’s report:
  • Fracking can strain water resources, especially in dry places or regions suffering from drought.
  • Chemicals used in fracking, fracking fluid, and water from underground formations (which can be laced with toxics and radioactive elements), all have the potential to leak into water supplies.
  • Wells can be drilled into underground aquifers.
  • Chemical-laden liquids and gases can move through fractured rock underground, exiting formations that contain oil and natural gas, and entering water-bearing formations.
  • Fracking wastewater can be stored, treated and disposed of in ways that risk causing water pollution.
These are among the threats that researchers have been chronicling for years. The fracking industry has tried to sidestep these concerns, but the EPA report underscores that the threats are real.

The dangers the EPA found, and the occasions on which they are known to have contaminated drinking water, may not be the only ways fracking threatens drinking water. The EPA’s report notes that researchers encountered severe data limitations – including industry-backed restrictions on publicizing the number and location of fracking wells, as well as the identities and quantities of chemicals used – that limit our ability to know the full truth about fracking’s dangers.

The question now is what to do with the knowledge we do have. Should fracking be banned outright? Can stronger regulations be sufficiently protective of the public? Or should we continue with business as usual?

In considering the answer to those questions, it is important to ask a few others:
  • Is a short-term boost in fossil fuel production worth risking enduring damage to groundwater supplies – damage that can be prohibitively expensive, if not impossible, to fully clean up?
  • Is it fair to subject those living in areas where fracking takes place to the risk of water contamination in order to deliver cheaper fossil fuels to the rest of us?
  • Is it smart to allow the widespread use of a self-evidently risky technology for more than a decade before determining whether it poses a threat to drinking water?
  • Drinking water contamination is just one of many potential dangers posed by fracking. If one adds the public health damage caused by fracking-related air pollution, the damage to natural areas, the impact on local infrastructure and quality of life, and other costs of fracking, is it ever worth doing?
Cities across the country, as well as the state of New York, have come to the conclusion that the answer to the last question is “no” – fracking simply isn’t worth the risks.

Even in places where fracking continues to take place, however, the EPA report has important implications. The risk posed by fracking to water supplies justifies requiring fracking companies to post bonds or other forms of financial assurance sufficient to ensure that the companies – not taxpayers – pay the full cost of cleaning up any damage.

And the data gaps in the EPA report indicate that it is critical to improve data collection on drinking water sources before and after fracking occurs, as well as to conduct additional hydrological studies about all methods of potential contamination of our precious drinking water sources.

We need to protect everyone’s water – including those people who live in areas where fracking is widespread. We should not threaten the scarce and valuable water supplies on which our lives depend by extracting from the ground polluting fossil fuels whose combustion endangers our very existence.

Monday, June 1, 2015

Getting the Public into the Policy Act

The other morning I met a disgruntled woman at my bus stop. She had been waiting more than 20 minutes for a bus to come along, after which three buses showed up in rapid succession. While we stood on the curb, she fumed: Rather than getting three buses at 30-minute intervals, couldn’t the transit agency send one bus every 10 minutes?

It turns out, though, that there are reasons for “bus bunching,” and one of the best ways to learn about the problem – and identify possible solutions – is to play a simple game created by engineering student Lewis Lehe and designer Dennys Hess (h/t CityLab). Through the game interface, you can try out your ideas for how to reduce or prevent bus bunching, with system responses that match the academic literature on the subject.

Game interfaces have the potential to be great tools for democratic engagement in policy making. They make complicated concepts understandable to a wide range of people, and enable ordinary citizens (and policy-makers) to test out potential scenarios for improvements.

I first did this in SimCity, the brilliant Maxis game series I played during middle and high school on my dad’s PC. I could create a city with no roads and only rail, or just subways. I could eliminate bus service and watch how my city thrived or collapsed into ruin. SimCity addressed many policy areas beyond transportation, including taxes, pollution from electricity generation, mixed-use land planning, police and fire coverage, and educational access.

SimCity and its ilk have allowed me and countless others to engage with these issues and experiment with solutions. Games don’t have to be complicated to be effective communicators. Among the many options are these simpler highlights that still give enough nuance to be fascinating:
Information doesn’t even have to be playable: Just looking like a game can make it more accessible, as in this video about subway delays from the New York City Metropolitan Transit Authority.

The wider the range of options – as SimCity had, and Cities: Skylines, a just-out game that’s touted as its intellectual heir – the greater the potential for mass public involvement, and creative solution experimentation.

This can create a more informed public, which is essential to good government – if the rules of the game accurately represent reality. If games have the power to educate and engage, they also have the power to mislead.

But gamification of public policy choices and dilemmas isn’t just for recreation. Getting large numbers of people to play such games can enable us to crowd-source solutions to real-world problems, educate the public about critical policy choices and dilemmas, gain critical information about public concerns and preferences, and support richer, more informed, and more diverse participation in public policy debates.

Tuesday, February 3, 2015

Revamping Urban Bus Routes: Data Analysis Tools Show the Way

As cities across the country wrestle to reconcile increasing demand for transit services with budget challenges, optimizing transit service can be a key tool for squeezing maximum value out of every available transportation dollar. Data-powered evaluations offer the potential of making those decisions easier and provide better outcomes.

The transit agency serving Houston just revamped its entire route structure and schedule in search of improved efficiency.

Like in many cities, Houston’s previous route plan was 30 years old, and was based on residential and employment centers at that time. And as in most cities, what updates have occurred were modifications based on the old system, making only incremental attempts at accommodating the major shifts in urban living and working patterns over the decades.

Now there are tools that can help policymakers and the public understand what those shifts mean, offer ways to respond effectively, and potentially even keep pace with changes in future years.

Houston’s new plan, scrapping a downtown-centric hub-and-spoke layout in favor of a citywide grid system, is slated to take effect in August; anyone interested in urban transit systems should watch how the transition goes there, to learn what to do as well as, perhaps, some pitfalls to avoid.

Regardless of how Houston’s effort fares, cities across the country are going to need to transition their 20th century transportation systems to ones ready for the 21st century. Fortunately, there are new tools that can help policymakers and residents alike better understand the systems that exist now, and model the potential results of proposed changes.

For inventorying the service potential of existing systems, there are several examples:
For imagining how transit systems could work better overall, and for testing potential results of changes, Transitmix, an online system allowing people to create their own bus lines on data-filled maps of the real world has transitioned from game to tool used by professionals. The Oregon Department of Transportation is the first to sign up to use Transitmix to assess service statewide; the modeling potential is significant.

With these new data-powered tools, planning transportation for the city of the future can involve more people, more perspectives and more potential options.